Prabhat Kumar College, Contai

Department of Mathematics

4th Semester Mathematics (Hons) CBCS Pattern

Paper: C-10

Time: 1 hours

Answer any one :-

- 1. Prove that every finite integral domain is a field.
- 2. Prove that the characteristic of an integral domain R is either prime or zero.
- Let *R* be a commutative ring with 1(≠ 0) and *P* be an ideal of *R*. Then prove that *P* is a proper prime ideal iff *R*/*P* is an integral domain.
- 4. Show that $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \in \mathbb{R} \mid a, b \in \mathbb{Q}\}$ is a subfield of the field \mathbb{R} .
- 5. Prove that if W_1 and W_2 are finite dimensional subspaces of a vector space V, then the subspace $W_1 + W_2$ is finite dimensional and dim $(W_1 + W_2) = \dim(W_1) + \dim(W_2) \dim(W_1 \cap W_2)$.
- 6. Let *V* and *W* be vector spaces of equal (finite) dimension and let $T: V \rightarrow W$ be linear. Then prove that the following are equivalent.
 - a) *T* is one-to-one.
 - b) T is onto.