Prabhat Kumar College, Contai

Department of Mathematics

4th Semester Mathematics (Hons) CBCS Pattern

Paper: C-9 Time: 1 hours

Answer any one :-

- 1. If $S \subset \mathbb{R}^2$ is a bounded and closed set and if f is continuous on S then show that f is bounded.
- 2. If f is a function defined in a deleted neighbourhood $N(x_0-y_0)-\{(x_0-y_0)\}$ of (x_0-y_0) and if $\lim_{(x,y)\to(x_0-y_0)}f(x,y)=l$ then show that $f(x,y)\to l$ as $(x,y)\to(x_0-y_0)$ through any path $y=\emptyset(x)$ such that $(x,\emptyset(x))\to(x_0-y_0)$.
- 3. Let $D \subset \mathbb{R}^2$ be an open set and $f: D \to \mathbb{R}$ and $(a, b) \in D$. If $f_{xy}(a, b)$ and $f_{yx}(a, b)$ both are continuous at (a, b) then prove that $f_{xy}(a, b) = f_{yx}(a, b)$.
- 4. If $f(x,y) = \frac{xy(x^2-y^2)}{x^2+y^2}$, $(x,y) \neq (0,0)$ and f(0,0) = 0 then show that $f_{xy}(0,0) = f_{yx}(0,0)$. Also show that the function f(x,y) does not satisfy the hypotheses of Schwarzs theorem.
- 5. Let u = f(x, y) where $= r \cos \theta$, $y = r \sin \theta$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}.$