What do you mean about aquaculture, fisheries, pisciculture and mariculture?

1. Aquaculture / Aquafarming:

- i. Aquaculture is the 'farming and husbandry of economically important aquatic plants and animals under controlled conditions'.
- ii. It is related to culture, capture, preservation, transport and marketing of aquatic organisms on fresh water, brackish water or sea water.
- iii. **Aquaculture**, also known as **aquafarming**, is the farming of aquatic organisms such as <u>fish</u>, <u>crustaceans</u>, <u>molluses</u> and <u>aquatic plants</u>.
- iv. Aquaculture involves cultivating freshwater and saltwater populations under controlled conditions, and can be contrasted with <u>commercial fishing</u>, which is the harvesting of <u>wild fish</u>.

2. Fisheries:

The scientific process by which **aquatic animals** not only fishes but also some other economically important aquatic animals (prawns, crabs, sharks, rays, various mollusks, dolphin, whale etc) are cultured, captured, preservation, transport and marketing are collectively called fisheries.

3. Pisciculture:

The scientific process by which **only** economically important edible and marketable **fishes** are reared for breeding, culture, capture, preservation, transport and marketing are collectively called as pisciculture.

4. Mariculture:

The scientific process of **culture of marine animals** like pearl oyster, edible mussels, lobster, marine crabs, milk fish, eels, sea cucumber, turtles, sponges etc. is called mariculture.

Distinguish between aquaculture, fisheries and pisciculture.

Aquaculture	Fisheries	Pisciculture
Aquatic plants and aquatic	Only aquatic animals are	Only fishes are reared.
animals are cultured.	cultured.	
The rearing organisms are	The rearing organisms are	The rearing fishes are ruhu,
algae, phytoplankton,	prawns, crabs, sharks, rays,	catla, mrigel, exotic carps
prawns, crabs, sharks, rays,	various mollusks, dolphin,	etc.
various mollusks, dolphin,	whale etc.	
whale etc.		
Eg. Pearl culture, weed	e.g, pearl culture, carp	Eg. Carp culture, joel fish
culture	culture, prawn culture	culture

Salient features of aquaculture (Advantages of aquaculture over agriculture):

- 1. Aquaculture is a three dimensional cultural system, while agriculture is a two dimensional cultural system. Therefore, as a three dimensional cultural system the available environment of aquaculture is much greater than agricultural environment.
- 2. Stocking density in aquaculture is higher than agricultural field.
- 3. Aquaculture gives efficient means of recycling agricultural and domestic wastes, in order to help protect our environment.
- 4. In aquaculture, there is scope for **integrated fish farming with agriculture** and animal husbandry like paddy cum fish culture, duck cum fish culture, pig cum fish culture etc. It is known to be more profitable than agriculture alone.
- 5. There is maximum scope for exploitation and manipulation. Here, we can manipulate or upgrade the environment 15 times keeping the carrying capacity fixed.

e.g., in case of prawn

Extensive	Semi intensive	Intensive	Super intensive
$2-3 \text{ no} / \text{m}^2$	$5-8 \text{ no} / \text{m}^2$	25-30 no / m ²	100 no / m ²

- 6. High-valued and commercially important items (such as lobsters, prawn, ornamental fishes etc) are produced through aquaculture than can earn good foreign exchange.
- 7. In aquaculture, there is maximum scope for employment generation.
- 8. In aquaculture, there is high feed conversion efficiency. Generally if 1.9 kg feed is supplied, we may get 1 kg fish flesh. While in case of beef it is 3:1 and in poultry it is 2:1.
- 9. From the point of view of human nutrition, the fish food is not only easily digestible but is also rich in essential amino acids. The unique poly unsaturated fatty acid (namely eicosapentaenoic acid) of fish is known to reduce cholesterol level of blood and save human beings from coronary diseases.

Types of Aquaculture / Aquafarming

A. Depending on the variations in salinity, aquaculture could be broadly divided into 4 types which again sub divided into many types.

Fresh water	Brackish water	V V 1	Metahaline culture
aquaculture	aquaculture	1,14110410410	
(<0.5% salinity)	(<0.5% - 30%	(30% - 35%	(>35% salinity)
•	salinity)	salinity)	•
Earthen ponds (mono,	On-bottom	Floating cage	Salty ponds
poly, joel fish culture)	Racks	Rafts & cage	
Raceways	Rafts	Racks	100
Sewage fed ponds	Tidal ponds	Poles	
Temple tanks	Pens	Longline	
Irrigation tanks	Cages	On-bottom	1
Reciculation system	_	Nylon webbing	
Ornamental fish		Artificial reef	y
Larvivorous fish			
Coldwater fish		X.on	
Moriculture		-0	
Integrated farming			
(pig-cum fish, duck-			
cum-fish, poultry-cum			
fish, paddy-cum-fish		Y	
culture etc)			
e.g., carp culture,	e.g., milk fish,	e.g., prawn	E.g., culture of
jeolfish culture.	lates, mugil,	culture, lobster	brine shrimp.
	prawn, mussel	culture, fish	
	culture etc.	culture etc.	

- **1. Fresh-water aquaculture:** The culture of organisms in fresh water having less than 0.5% salinity is called freshwater aquaculture.
- 2. **Brackish-water aquaculture:** The culture of organisms in brackish water having a salinity range between <0.5% 30% is called brackish water aquaculture.
- 3. **Mariculture:** The culture of marine organisms in sea water having 30-35% salinity is called mariculture.
- 4. **Metahaline culture:** The culture of marine organisms in sea water having more than 35% salinity is called metahaline culture.

B. Depending on motive of farming, based on economic and commercial considerations, this culture may be classified as-

1. Extensive fish culture:

- i. Extensive system of culture is usually done by stocking seeds on the basis of natural carrying capacity and is characterized by low inputs and maximum utilization of natural food resources available in culturable space.
- ii. Here little care is taken with regard to its improvement. So, it is the least managed fish farming.
- iii. Here, the yield is modest and the expenditure is less as it is raised on natural food.
- iv. Large ponds, beels etc for fish culture are brought under this culture.

2. Intensive fish culture:

- i. It is usually done by stocking seeds above the natural carrying capacity and is involved higher stocking densities and high inputs.
- ii. Here effective care is taken to achieve maximum production of fish from a minimum quantity of water.
- iii. **It is the best managed form of fish f**arming and fishes are **fed on art**ificial food in addition to natural feed. Here the yieldis very high (over **6000 kg/ha/year**).
- iv. Although the cost of investment is high, the earning from this culture far exceeds the cost, so as to ensure high profit.

3. Semi-intensive fish culture:

- i. As intensive culture possesses certain hazards, for which a culture between the first two is generally plasticized and called semi-intensive culture.
- ii. Here certain amount of management is required and the net profit is in between the above two.

Comparative account of different types of shrimp farming

Parameters	Extensive/	Modified	Semi-	Intensive	Super-
	Traditional	extensive	intensive		intensive
Stocking is	Natural	Natural	Slightly	More or	Higher the
done on	productivity	productivity	above the	highly	natural
	level	level	natural	above the	productivit
<i>></i>			productivit	natural	y level
			y level	productivit	
				y level	
Pond size	Indefinite	1-2 ha	<=1 ha	0.2-0.4 ha	0.05 -0.1ha
Shape	Irregular	Rectangular	Square	Square	circular
Stocking	1-2	3-7	8-15	50-100	>100
density					
(nos/m^2)					

Water depth	0.5-1.2	0.8-1.5	0.8-1.5	0.8-1.5	0.8-1.5
(m)					
Seed source	Wild	Wild /	Hatchery	Hatchery	Hatchery
		Hatchery			
Aeration	Not required	Very less, if	2HP	8-12 HP	Continuous
		needed			
Feed use	Natural	Formulated	Pelleted	Pelleted	Pelleted
Water	Erratic	10% per day	25-40% per	>= 50% per	100% per
exchange			day	day	day
Crops/year	1	2	2	Batch-wise	Batch-wise
Crops, jear	1	2	_	Batter Wise	Daten wise
Production	300-500	1000-2000	3000-6000	15000	25000

Characteristics	Extensive aquaculture	Intensive aquaculture
Inputs	Low	High
Self-sufficiency	Closed system	Open system
Waste	Useful-recycled	Hazards
No of spp	Several	One
Energy input	Low	High
Markets	Near to farm	Far away from farm
Economy	Subsistence	Capital intensive

C. Depending on special operational techniques, fish culture practices may be classified as-

1. Cage culture:

Rearing of fin-fishes and shellfishes in cages made by synthetic float and nylon meshes either in flowing river or in a big impoundment is called cage culture. The cage is supported by a rigid frame work made by bamboo, wood, metal Joel fishes respond well to cage culture practices.

2. Pen culture:

Culture of fin-fishes and shellfishes in small fenced enclosure along the margin of water sheds of which sides are covered by bamboo matting, netting or screening is called pen culture.

Fisheries Resources of India and Their Classification

What are fisheries?

The scientific process by which **aquatic animals** not only fishes but also some other economically important aquatic animals (prawns, crabs, sharks, rays, various mollusks, dolphin, whale etc) are cultured, captured, preservation, transport and marketing are collectively called fisheries.

Types o	f fisheries	resources	based o	on	different	habitat:
			T	Tial.	orioc	

		I islici ics		
Inland Fis	heries			Marine Fisheries
			Q.	
Fresh-wate	r fisheries	Brackish water fisherie	s Coastal fisheries	Offshore fisheries
	Estuarine fishery		Pelagic fisheries	Deep sea fisheries (Demersal)
Capture fis		Culture fishery	I	
		oe Me		
Reverine	Lake	Reservoir Pond		
Fisheries	fisheries	fisheries fisher	·y	
	Je)	Major Carp Fishery	Joel fish	fishery
Common c	ulture	Comr	osite culture	

Inland fishery resources:

- i. Except the seas and bays, the inland rivers, streams, canals, beels, lakes, ponds etc where fish cultivation is possible, together constitute inland fisheries areas.
- ii. Inland fisheries are possible both in fresh water as well as brakish water.
- iii. In India there are about 40, 54,000 acre inland water bodies of which 15, 75,000 acre are remain in unused condition.
- iv. In India west Bengal occupies the 1st position in inland fishery.
- v. India's inland fisheries resources are as diverse as they are plentiful, comprising rivers, floodplains, estuaries, mangroves, estuarine impoundments, lagoons, upland lakes, reservoirs and ponds. In India, inland fisheries is classified as follows: freshwater aquaculture, including the pond culture of carp; brackishwater aquaculture, involving mostly shrimp culture; and capture fisheries in rivers, estuaries, lakes, reservoirs, etc.

Inland Fisheries resources of India			
Resource	Size		
Rivers and canals	173 287 km		
Swamps and other wetlands	1 097 787 ha		
Floodplain lakes	202 213 ha		
Upland lakes	72 000 ha		
Mangroves	356 500 ha		
Estuaries	285 000 ha		
Lagoons	190 500 ha		
Reservoirs	3 153 366 ha		
Freshwater ponds	2 254 000 ha		
Brackishwater ponds	1 235 000 ha		

A. Fresh water inland fisheries: They are of following typesFresh water inland fisheries

1Capture fishery		2. Culture fishery		
Reverine Fisheries	Lake fisheries	Reservoir fisheries	Pond fishery	
	Mille	Major Carp Fishery	Joel fish fishery	
Common	culture		Composite culture	

1. Capture Fishery	2. Culture Fishery
It means harvesting the fishes from	It means to grow fish in smaller inland water
the natural inland water bodies where	bodies that can be manipulated by man.
they are spontaneously produced.	
Man has only to reap without having	Man himself sowing the seed, reared and
to sow, nature herself sowing the seed	finally harvested when grown to table size.
through self propagation	
Only exploration, exploitation,	Pre-stocking, stocking and post-stocking
conservation and management is	management is generally done.
done.	

e.g., lake, river, reservoir fishery.	e.g., pond fishery
China occupies the first position.	China occupies the first position.

1. Capture Fishery

a. Riverine fishery:

- i. The five riverine systems and their tributaries form the main riverine system of fresh water of India.
- ii. They are Ganga, Brahmaputra, northern Indus riverine system, eastern coastal riverine system (Mahanadi, Subranarekha, Godabari, Krishna, Kaveri etc) and western coastal riverine system (Narmada, Taptietc).

	Ganga	Brahmaputra	Indus	Eastern	Western
	riverine	Riverine	riverine	coastal	coastal
	system	system	system	riverine	riverine
			X	system	system
Total	8047 km	4023 km		6437 km	3380 km
length			O'		
Icthyofauna	All types of	Carps	Trout,	Carps,	Carp,
	carp,	(chital), cat	carps,	catfish,	catfish,
	mahasole,	fishes	catfish etc	trout, murel,	murel,
	Hilsa, prawn	(Tangra, aar,		prawn etc.	perch,
	etc.	boal, magur			prawn etc.
		etc)			

b. Lake fishery:

- i. Lake is defined as a natural body of standing water occupying a basin and taking continuity with sea and where thermal stratification is prominent.
- ii. The important lakes of India are Kodaicanal Lake, Otoe lake, yarkud lake, noinital lake, loktak lake, ular lake etc.
- iii. The icthyofauna in lakes are common carps, tilapia, and hybrid fishes.

i. India has more than 200000ha of floodplain lakes (locally called *mans*, *chaurs*, *beels*, *jheels*, and *pats*), especially in the States of Assam, Bihar, and West Bengal.

Distribution of floodplain lakes in India				
State	River basin	Area		
		(ha)		
Arunachal Pradesh	Kameng, Subansiri, Siang, Dibang, Lohit, Dihing and Tirap	2500		
Assam	Brahmaputra and Barak	100000		
Bihar	Gandak and Kosi	40000		
Manipur	Iral, Imphal and Thoubal	16500		
Meghalaya	Someswari and Jinjiram	213		
Tripura	Gumti	500		
West Bengal	Hooghly and Matlah (Ganga)	42500		
Total	20)	202213		

ii. The current yield of floodplain wetlands is not precisely known. Nonetheless, important scientific studies have been made on the limnology and productivity of these ecosystems and a production potential ranging from 1000 to 2000 kg/ha/yr has been estimated. They also provide the ideal location for pen and cage culture operations. Pen culture of major carp has indicated a production potential of up to 4 t/ha in six months according to the results obtained in a *man* in the Gandak basin. The rearing of *Clarias batrachus* and *Heteropneustes fossilis* in a weed-choked Assam *beel*, over a period of 90 days in 2 km² cages, obtained production results ranging from 0.190 kg to 4.8 kg.

c. Reservoir fishery:

- i. A reservoir is defined as a large expanse of impounded water artificially created by putting cross a stream of an earthen, stone or concrete bundth or dam.
- ii. The important reservoirs are Nagarjun sagar in AP, Osman sagar in AP, Panchet, mithon, murakhi in Bihar, perier, noayer in Kerala, konsaboti, DVC in W.B.

iii. The icthyofauna in reservoirs are ruhu, catla, calbose, silver carp etc.

B. Brackish water inland fisheries

a. <u>Bheries (brakish water pond):</u>

- i. When ponds are more than 200 acres and water depth is 6-7ft, it is known as bheries.
- ii. chilka lake (OR), Pulikot lake (TN) etc are examples of brakish water lakes.
- iii. Icthyofauna are lates, persay, topsey, pramfred, ribbon fish etc.

b. Estuary:

- i. An estuary is a semi enclosed coastal body of water that has free connection with open sea and is strongly affected by tidal action and in which sea water is usually measurably diluted with fresh water from land drainage.
- ii. River mouths, coastal bays, tidal marshes etc are examples of estuary.
- iii. The common estuary in India are Hooghly matla estuary (WB), Mahanadi estuary(Orrissa), Godabari & Krishna estuary (AP), Kaveri estuary (TN), Narmada & Trapti estuaries (MH).
- iv. Icthyofauna of estuary are divided into two types- **Resident species:** Mugil parsia, M. tade, Lates calcarifer, Polynemus indicus, Pama pama etc.

Migratory species: Hilsa sp., Polynemus sp., Liza sp., Pangasius sp.,

2. Culture Fishery:

Pond Fishery:

- i. It is a standing water bodies in which circulation of water is slow and usually of vertical type.
- ii. It has no water current, minimum land water interchange, less evenly distributed oxygen.
- iii. It has littoral zone, limnetic zone and profundal zone.
- iv. Icthyofauna in pond fishery are carps, silver carp, grass carps, etc.

4 Reservoir fisheries

In India, reservoirs are considered the prime resource as regards capture fisheries and extensive aquaculture. The rivers, estuaries and other natural water bodies are threatened by increasing environmental degradation. With the great emphasis on conservation, there

is little scope for a substantial increase in yields. The reservoirs, which already cover 3 millionha of surface area, are a growing resource with enormous potential for yield augmentation. The available estimates made by various agencies are conflicting and inaccurate. The most recent study (Sugunan, 1995) estimated the combined surface area of all reservoirs, irrespective of size, as 3135366 ha. Enumeration of the medium and large reservoirs in India is a relatively easy task as there are fewer of them and the details are readily available from the irrigation, power and public works authorities. However, compilation of data on small reservoirs is a tedious task as they are ubiquitous and too numerous to count.

Definition and classification

The major irrigation tanks have an average size water bodies which retain water year wise are considered as reservoirs.

According to the records of the Government of India, reservoirs are generally classified as small (<1000 ha), medium (1000 to 5000 ha) and large (>5000 ha). All man-made impoundments, created by erecting a dam of any description in order to obstruct the surface flow of a river, stream or any water course, have been classified as reservoirs. However, water bodies of less than 10ha in area, being too small to be considered lakes, are excluded.

Surface area (ha) of reservoirs by states					
State	Small	Medium	Large	Total	
Tamil Nadu	315 941	19 577	23 222	358 740	
Karnataka	228 657	29 078	179 556	437 291	
Madhya Pradesh	172 575	169 502	118 307	460 384	
Andhra Pradesh	201 927	66 429	190 151	458 507	
Maharashtra	119 515	39 181	115 054	273 750	
Gujarat	84 124	57 748	144 358	286 230	
Bihar	12 461	12 523	71 711	96 695	
Orissa	66 047	12 748	119 403	198 198	
Kerala	7 975	15 500	6 160	29 635	
Uttar Pradesh	218 651	44 993	71 196	334 840	
Rajasthan	54 231	49 827	49 386	153 444	
Himachal	200	-	41 364	41 564	

Pradesh				
Northeast	2 239	5 835	-	8 074
Haryana	282	-	-	282
West Bengal	732	4 600	10 400	15 732
Total	1 485 557	527 541	1 140 268	3 153 366

For purposes of clarity, the anomalies in nomenclature, especially as regards small reservoirs, can be ignored by simply classifying large (above 10 ha) irrigation tanks as reservoirs. According to this system of grouping, India has 19134 small reservoirs with a total water surface area of 1485557 ha. Similarly, 180 medium and 56 large reservoirs of the country have an area of 527541 and 1140268ha respectively. Thus, the country has 19370 reservoirs covering 3153366ha.

Fish production from reservoirs

A reliable estimate of fish production from Indian reservoirs is not available. Compared with the impressive volume of data on limnological aspects of reservoirs collected by individual researchers and various institutions, the estimates of fish catch remain grossly inadequate. Furthermore, the production data available are at times inaccurate and unreliable. Following are the main reasons for this deficiency:

- complications in the collection of data in some states because of the multiplicity of agencies owning fishing rights;
- widely dispersed and unorganized market channels, mostly controlled by unauthorized money lenders;
- an ineffective cooperative setup;
- diverse licensing/royalty/crop sharing systems practiced by different state governments; and
- inadequate and poorly trained workforce at the disposal of the states to collect catch data by following statistically sound sampling procedures.

Fish production in the small reservoirs of India					
State	Number	Production	Yield		
		(ton)	(kg/ha)		
Tamil Nadu	52	760	48.5		
Uttar Pradesh	31	168	14.60		
Andhra Pradesh	37	2224	188.0		
Maharashtra	6	72	21.09		

Total	291	4707	449.14
Orissa	53	349	25.85
Madhya Pradesh	2	24	47.26
Bihar	25	22	3.91
Kerala	7	118	53.50
Rajasthan	78	970	46.43

Fish production figures of Andhra Pradesh as given by the State Department of Fisheries are the highest in the group, followed by Kerala, Tamil Nadu, Madhya Pradesh, Rajasthan and others ranging from 3.91 kg/ha (Bihar) to 188.0 kg/ha (Andhra Pradesh). On average, the 291 small reservoirs of India yield fish at the rate of 49.9 kg/ha. The average estimated yields of small, medium and large reservoirs are 49.9, 12.30 and 11.43kg/ha respectively. By applying the average yield of small reservoirs to their total surface area of 1485557 ha, their current production rate can be estimated at 74129 t. In the same way the production of medium and large reservoirs is estimated at 6488 and 13033t respectively.

Fish species resources

The fish faunistic spectrum of India is very rich. More than 400 species of freshwater fish, many of which are economically important, have been identified in Indian rivers. The Gangetic system alone harbours at least 265 species of fish. One hundred and twenty-six species belonging to 26 families have been identified in the Brahmaputra system. The peninsular rivers have been reported to harbour at least 76 fish species. Despite the faunistic changes associated with impoundments, Indian reservoirs harbour a rich variety of fish species. On the basis of studies conducted so far, large reservoirs, on average, harbour 60 species of fish, of which at least 40 contribute to commercial fisheries. The fast growing Indo-Gangetic carp are among the most commercially important fish. More recently, a number of exotic species have contributed substantially to commercial fisheries. Following is a broad categorization of the species:

Indian major carp: Labeo rohita, L. calbasu, L. fimbriatus, Cirrhinus mrigala, Catla catla

Mahseer: Tor tor, T. putitora, T. khudree, Acrossocheilus hexagonolepis

Minor carp, snow trout and peninsular carp: Cirrhinus cirrhosa, C. reba, Labeo kontius, L.bata, Puntius sarana, P. dubius, P. carnaticus, P. kolus, P. dobsoni, P. chagunio, Schizothorax plagiostomus, Thynnichthyes sandkhol, Osteobrama vigorsii

Large catfish: Aorichthys aor, A. seenghala, Wallago attu, Pangasius pangasius, Silonia silondia, S. childrenii

Featherback: Notopterus notopterus, N. chitala

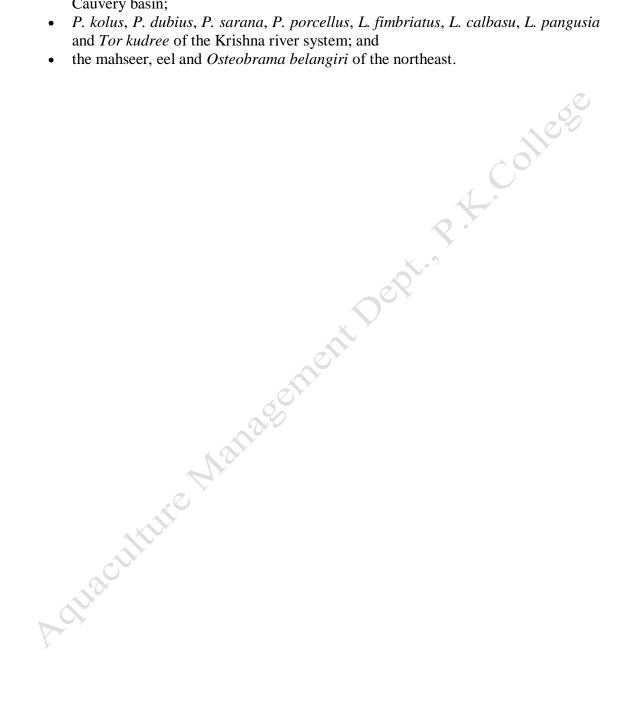
Air-breathing catfish: Heteropneustes fossilis, Clarias batrachus

Murrel: Channa marulius, C. striatus, C. punctatus, C. gachua

Weed fish: Ambassis nama, Esomus danrica, Aspidoparia morar, Amblypharyngodon mola, Puntius sophore, P. ticto, Oxygaster bacaila, Laubuca laubuca, Barilius barila, B. bola, Osteobrama cotio, Gadusia chapra

Exotic fish: Oreochromis mossambicus, Hypophthalmichthys molitrix, Cyprinus carpio specularis, C. carpio communis, Gambusia affinis, Ctenopharyngodon idella.

Most of the catfish, featherback, air-breathing fish, murrel and weed fish are distributed countrywide, while the distribution of major carp, minor carp and mahseer varies according to the river basins. Indian major carp are the main native ichthyofauna of the rivers of the Gangetic system. These rivers also harbour *Labeo bata*, *P. sarana*, *P. chagunio*, and *C. reba*. *Tor putitora*, *Labeo dero* and snow trout (*Schizothorax* spp.) are the dominant riverine fish fauna of Indus system. Mahseer, especially chocolate mahseer (*Acrosscheilus hexagonolepis*) are also found in the streams of all the major river systems of the country. Indigenous fish of the peninsular rivers include *Cirrhinus cirrhosa*, *C. reba*, *Labeo kontius*, *L. fimbriatus*, *P. dubius*, *P. sarana*, *P.carnaticus*, *P. kolus*, *P. dobsoni*, *T. tor*, *T. sandkhol* and *O. vigorsii*.


The three types of Indian major carp have been stocked extensively in reservoirs all over the country for many decades and, in many cases, they have established themselves in reservoirs which are far away from their original habitat. Sathanur reservoir in Tamil Nadu has a naturalized population of catla which constitute 80 to 90% of the total catch. This Gangetic carp has prevailed over indigenous fish fauna including *Labeo fimbriatus*, which made up 36% of the catch during the mid 1960s. Similarly, introductions of silver carp in Gobindsagar, common carp in Krishnarajasagar and tilapia (*Oreochromis mossambicus*) in Amaravathy are examples of man-induced changes in fish communities.

Impact of reservoir formation on the native ichthyofauna

The formation of reservoirs has particularly affected the following indigenous fish stocks:

- the mahseer, snow trout and *Labeo dero*, and *L. dyocheilus* of the Himalayan streams;
- the anadromous hilsa, catadromous eel, and freshwater prawn of all major river systems;

- P. sarana, T. tor mahanadicus, T. mosal, L. fimbriatus, L. calbasu, and Rhinomugil corsula of the Mahanadi river;
- P. dobsoni, P. dubius, P. carnaticus, C. cirrhosa and Labeo kontius of the Cauvery basin;
- P. kolus, P. dubius, P. sarana, P. porcellus, L. fimbriatus, L. calbasu, L. pangusia

